
On
Preserving

Glitch

Tutorial for translating
glitchy files into a form
which 3D printers can
understand

#smooth
ActionFormat Theme

#beyond #recipe
Year
2016

Project
On Preserving Glitch

Author
Sophie Kahn

In a folder on my desktop, I keep
a folder entitled ‘weird errors’. I
also advise all my students to
do the same. It’s inevitable that,
in the course of learning to 3D
model, scan or print, odd results
can arise. Instead of committing
these files to the wastebasket,
I tell students to keep them all,
along with a short note detailing
the steps that led to their creation.
As an artist I have always found it
imperative to keep an eye open to
the mistakes, glitches and strange
detours that crop up while pursuing
a project. (I now outsource most of
my fabrication, but an unfortunate

consequence of this post-studio
practice is that errors are seen
only by fabricators. I also ask my
fabricators to send me images
of any errors that happen and
corrected before the artist can
observe them and perhaps turn
them into a new body of work.)
In my own practice, I misuse high-
end 3D laser scanners in order to
yield glitchy results. It has been a
challenge to learn to 3D print my
files without erasing their native
aesthetic. Most tutorials on 3D
printing focus on repair: patching
holes, deleting areas of bad data,
and smoothing surfaces in order

to produce a result that looks
‘natural’ and closer to the original.
In my practice, I do the opposite.
Of course I manipulate my files,
but I try to expose the glitches
that arise along the way instead of
‘correcting’ them. An incomplete 3D
scan reveals the incompleteness of
human vision; made from a single
perspective, it only takes a slight
rotation to reveal the gaps and blind
spots, all the things we do not see.
Below is a brief tutorial on how to
process a glitchy file in order for a
3D printer to understand it.

#smooth
ActionFormat Theme

#beyond #recipe
Project
On Preserving Glitch

STEP 1: Obtain a glitchy file (image 1)

This could be a
poorly done 3D
scan, or a 3D file
that arose when
you did something
uninspected:
turned a sphere
inside out, or
ran an operation
that caused your
object to break
out in a rash of
polygons. The
most interesting
results often
arise when you
use a tool for
a purpose for
which it was not

designed: in my case, try to 3D scan
a moving body. My file is an incomplete
3D laser scan of my body, swathed in a
bed-sheet and holding the 3D scanner’s
magnetic locator cube – which in the
image appears to be some kind of
ceremonial object. My eyes are closed
to protect them from the scanner’s not-
quite-eye-safe laser beam – but it
appears that I am deep in meditation.

STEP 2: Analyse the file in Netfabb Basic
(image 2)

Import using
part->add in
order to view and
get some basic
information on
your file. If the
dimensions do
not look right,
use part->scale
to adjust them.
Then look to see
if the surface is
open or closed.
If you hit the
repair icon (red
cross on the
toolbar) Netfabb
will provide
some statistics,
including the

number of holes in the file. You will be
able to see if it is an open surface as
one side will be red (in Netfabb, green
is ‘outside’ and green is ‘inside’.) In

order for a 3D printer to understand
a file, it needs to meet certain
basic conditions. It must be a single
‘watertight’ surface; all the polygons
must be facing the same way (polygon
faces have a direction called a ‘normal’
that isn’t usually visible in the GUI,
but the printer software will need to
know which side is the inside and which
is outside, and this can get scrambled in
glitchy files); and it needs to conform
to the limits of the material you want
to use for printing. This is called wall
thickness and is important so that the
final piece does not break on printing, or
on removing from the machine. If you did
not create your file in a solid modeling
program like TinkerCAD, chances are it
has no inherent thickness (my scans
are merely skins with a zero value for
thickness). The first step is to turn your
shape into a solid, three-dimensional
object. The very quickest way to solidify
without filling in holes or cracks is to
offset the mesh. This creates a copy of
the surface at a uniform distance. After
extensive experimentation, the only way
I have found to perform this operation
(if you don’t have $10,000+ to drop on
Geomagic) is to use Rhinoceros. It’s not
free but it does have a 90-day trial and
a Mac beta here (if your file is largely
solid, e.g. a scan of an object in 360
degrees that has only small holes, you
may omit this step).

STEP 3: Offset in Rhino (image 3, file –
BustOffsetInRhino)

Make sure your file
is the size that
you want it to be,
then offsetit by a
minimal amount.
Use OffsetMesh in
the Rhino command
line and make sure
that ‘solidify’ is
checked. Export
it as an obj and
import it back into
Netfabb. Choosing
the correct wall
thickness is
critical: if you are ordering through a
service bureau like Shapeways, the file
must pass wall thickness requirements or
it will be rejected. There is little room
for experimentation with large factories

https://www.netfabb.com/products/netfabb-basic
https://www.rhino3D.com/download
https://www.rhino3D.com/download

#smooth
ActionFormat Theme

#beyond #recipe
Project
On Preserving Glitch

or service bureaus, as one print that
does not go through correctly can crash
their build and cost thousands in lost
revenue. You may have more luck if you
have access to your own 3D printer at
a school or lab. Another reason to keep
the piece as thin as possible, but no
thinner, is that 3D printing material is
usually priced by the cubic centimeter.
You will also need to carefully consider
wall thickness if you plan to cast
the piece later: my foundry have had a
challenging time with casting any prints
that are under 3 or 4mm thick. (The
irony and hubris of taking something
as ephemeral as a digital glitch, then
printing and immortalizing it in bronze,
which will outlive us all – unless melted
down for scrap when the shit inevitably
hits the fan – is not lost on me.)

STEP 4: Netfabb Repair (image 4)

I have found that the
most reliable repair
workflow in Netfabb
involves running
repair operations
in this order:
stitch triangles,
fill trivial holes,
fill all holes, fix
flipped triangles,
remove degenerate
faces. (Opt for this
if you can rather
than the automated
repair. You may need
to bump up the Stitch
Triangles tolerance

if you still see numerous small holes
highlighted in yellow.

STEP 5: Remove Extra Shells in Netfabb
(image 5)

In the Netfabb
repair module, hit
‘select shells’
to select the main
object, then hit
‘toggle selection’
to select all the
other extraneous
shells. (This is
also necessary in
order to avoid
rejections. If any
pieces are now

selected that you don’t want to delete,
you will need to join them on manually
to the main shell by deleting faces and
then adding triangles to join them on.)
Hit the delete key to remove these. The
shells window in the repair module should
now have a count of 1.

STEP 6: Manual Repair (image 6)

The workflow above
is a brief overview
of the most minimal
steps that you will
need to obtain a
printable stl file.
I have omitted any
automatic operations
that fill, smooth
or correct the
appearance of the
file (offsetting first
in Rhino preserves
any existing holes,
instead of filling
them in.) However,
there are no medals
for authenticity
in glitch art, and
you are within your
rights to alter your
file in any way you wish before printing it.
Avoiding auto-repair means you may want
to delete or rebuild areas of your model.
You can do this by selecting individual
triangles or surfaces (tip – change
the surface tolerance slider to select
smaller or larger areas at any time, or
use CTRL+ or CTRL- to grow or shrink
your selection) then delete those areas,
and fill the holes either in the repair
options or by hitting ‘add triangles’ and
putting in new triangles to fill gaps.

STEP 7: Finbal
Repair and Export
(image 7)

Check that your file
is now a single
error-free shell in
Netfabb. Then export
as an STL file.

